Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #902

Bibtex

@article{reference_tag,
  author = "Silvia Serrao-Neumann and Marguerite A. Renouf and Edward Morgan and Steven J. Kenway and Darryl Low Choy",
  title = "Urban water metabolism information for planning water sensitive city-regions",
  journal = "Land Use Policy",
  year = 2019,
  abstract = "Climate change and growing populations will stretch water resources in many city-regions globally, and urbanisation will continue to degrade water quality and upset natural hydrological flows. These pressures call for alternative urban water management approaches with improved connection with land use planning. Evaluating the water metabolism of urban areas gives a holistic picture of how water flows through and is transformed by urban settlements, to inform land use planning for sustainably managing urban water. Previous research has conceptualised how metabolism science may inform urban land use planning. In this work, we build on to identify how urban water metabolism evaluations can inform urban planning practice. We ask, ‘how can urban water metabolism evaluations support urban and water planning towards water sensitive city-regions?’ Focusing on three Australian capital city-regions, we empirically identify the knowledge needs of practitioners and compare this against the knowledge known to be generated from past urban water metabolism evaluations. This was done within a framework of urban water resource management objectives for water sensitive cities - that is, protection of water resources and hydrological flows, recognition of the diverse functions of water, and resource efficiency and supply internalisation. Based on the findings, the paper discusses five key strategic initiatives for planning for water sensitive city-regions: resource efficiency and hydrological performance benchmarks and targets for urban developments, tailoring programmes for resource efficiency, making case for regional blue-green space networks for improved hydrological performance, small and large-scale infrastructure innovation, and social and institutional innovation in urban water management.",
  doi = "10.1016/j.landusepol.2019.104144",
}

RIS

TY  - JOUR
T1 - Urban water metabolism information for planning water sensitive city-regions
AU - Silvia Serrao-Neumann and Marguerite A. Renouf and Edward Morgan and Steven J. Kenway and Darryl Low Choy
Y1 - 2019
DO - 10.1016/j.landusepol.2019.104144
N2 - Climate change and growing populations will stretch water resources in many city-regions globally, and urbanisation will continue to degrade water quality and upset natural hydrological flows. These pressures call for alternative urban water management approaches with improved connection with land use planning. Evaluating the water metabolism of urban areas gives a holistic picture of how water flows through and is transformed by urban settlements, to inform land use planning for sustainably managing urban water. Previous research has conceptualised how metabolism science may inform urban land use planning. In this work, we build on to identify how urban water metabolism evaluations can inform urban planning practice. We ask, ‘how can urban water metabolism evaluations support urban and water planning towards water sensitive city-regions?’ Focusing on three Australian capital city-regions, we empirically identify the knowledge needs of practitioners and compare this against the knowledge known to be generated from past urban water metabolism evaluations. This was done within a framework of urban water resource management objectives for water sensitive cities - that is, protection of water resources and hydrological flows, recognition of the diverse functions of water, and resource efficiency and supply internalisation. Based on the findings, the paper discusses five key strategic initiatives for planning for water sensitive city-regions: resource efficiency and hydrological performance benchmarks and targets for urban developments, tailoring programmes for resource efficiency, making case for regional blue-green space networks for improved hydrological performance, small and large-scale infrastructure innovation, and social and institutional innovation in urban water management.
ER - 

Journal Article

2019

Author(s)

Silvia Serrao-Neumann and Marguerite A. Renouf and Edward Morgan and Steven J. Kenway and Darryl Low Choy

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

Urban water metabolism information for planning water sensitive city-regions

Land Use Policy

Land Use Policy

Climate change and growing populations will stretch water resources in many city-regions globally, and urbanisation will continue to degrade water quality and upset natural hydrological flows. These pressures call for alternative urban water management approaches with improved connection with land use planning. Evaluating the water metabolism of urban areas gives a holistic picture of how water flows through and is transformed by urban settlements, to inform land use planning for sustainably managing urban water. Previous research has conceptualised how metabolism science may inform urban land use planning. In this work, we build on to identify how urban water metabolism evaluations can inform urban planning practice. We ask, ‘how can urban water metabolism evaluations support urban and water planning towards water sensitive city-regions?’ Focusing on three Australian capital city-regions, we empirically identify the knowledge needs of practitioners and compare this against the knowledge known to be generated from past urban water metabolism evaluations. This was done within a framework of urban water resource management objectives for water sensitive cities - that is, protection of water resources and hydrological flows, recognition of the diverse functions of water, and resource efficiency and supply internalisation. Based on the findings, the paper discusses five key strategic initiatives for planning for water sensitive city-regions: resource efficiency and hydrological performance benchmarks and targets for urban developments, tailoring programmes for resource efficiency, making case for regional blue-green space networks for improved hydrological performance, small and large-scale infrastructure innovation, and social and institutional innovation in urban water management.

Tags

  • Case Study
  • Scenario analysis
  • Sub-national
  • Urban
  • Water

More information

10.1016/j.landusepol.2019.104144

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Reflections on the first Actionable Science for Urban Sustainability (un)conference (AScUS) 2020
June 23, 2020

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands