Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #514

Bibtex

@article{reference_tag,
  author = "Güneralp, Burak and Zhou, Yuyu and Ürge-Vorsatz, Diana and Gupta, Mukesh and Yu, Sha and Patel, Pralit L. and Fragkias, Michail and Li, Xiaoma and Seto, Karen C.",
  title = "Global scenarios of urban density and its impacts on building energy use through 2050",
  journal = "Proceedings of the National Academy of Sciences of the United States of America (PNAS)",
  year = 2017,
  abstract = "Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.",
  doi = "10.1073/pnas.1606035114",
}

RIS

TY  - JOUR
T1 - Global scenarios of urban density and its impacts on building energy use through 2050
AU - Güneralp, Burak and Zhou, Yuyu and Ürge-Vorsatz, Diana and Gupta, Mukesh and Yu, Sha and Patel, Pralit L. and Fragkias, Michail and Li, Xiaoma and Seto, Karen C.
Y1 - 2017
DO - 10.1073/pnas.1606035114
N2 - Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.
ER - 

Journal Article

2017

Author(s)

  • Burak Güneralp
  • Diana Ürge-Vorsatz
  • Karen C. Seto
  • Michail Fragkias
  • Mukesh Gupta
  • Pralit L. Patel
  • Sha Yu
  • Xiaoma Li
  • Yuyu Zhou

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

Global scenarios of urban density and its impacts on building energy use through 2050

Proceedings of the National Academy of Sciences of the United States of America (PNAS)

Proceedings of the National Academy of Sciences of the United States of America (PNAS)

Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

Tags

  • Future Scenario
  • Global
  • Multi-scale
  • National
  • Scenario analysis
  • Urban

More information

10.1073/pnas.1606035114

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Reflections on the first Actionable Science for Urban Sustainability (un)conference (AScUS) 2020
June 23, 2020

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands