Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #290

Bibtex

@article{reference_tag,
  author = "Goldstein, Benjamin and Birkved, Morten and Fernández, John and Hauschild, Michael",
  title = "Surveying the Environmental Footprint of Urban Food Consumption",
  journal = "Journal of Industrial Ecology",
  year = 2016,
  abstract = "Assessments of urban metabolism (UM) are well situated to identify the scale, components, and direction of urban and energy flows in cities and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure, such as transport, space conditioning, and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with 'biomass') and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting of the environmental footprint from urban food demand ('foodprint') is necessary. This article reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint, and ecological footprint and situates it relative to other significant environmental drivers (transport, energy, and so on) The foodprint was typically the third largest source of mass flows (average is 0.8 tonnes per capita per annum) and carbon footprint (average is 2.1 tonnes carbon dioxide equivalents per capita per annum) in the reviewed cities, whereas it was generally the largest driver of urban ecological footprints (average is 1.2 global hectares per capita per annum), with large deviations based on wealth, culture, and urban form. Meat and dairy are the primary drivers of both global warming and ecological footprint impacts, with little relationship between their consumption and city wealth. The foodprint is primarily linear in form, producing significant organic exhaust from the urban system that has a strong, positive correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, cities can still implement design and policy interventions, such as improved nutrient recycling and food waste avoidance, to redress the foodprint.",
  doi = "10.1111/jiec.12384",
}

RIS

TY  - JOUR
T1 - Surveying the Environmental Footprint of Urban Food Consumption
AU - Goldstein, Benjamin and Birkved, Morten and Fernández, John and Hauschild, Michael
Y1 - 2016
DO - 10.1111/jiec.12384
N2 - Assessments of urban metabolism (UM) are well situated to identify the scale, components, and direction of urban and energy flows in cities and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure, such as transport, space conditioning, and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with 'biomass') and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting of the environmental footprint from urban food demand ('foodprint') is necessary. This article reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint, and ecological footprint and situates it relative to other significant environmental drivers (transport, energy, and so on) The foodprint was typically the third largest source of mass flows (average is 0.8 tonnes per capita per annum) and carbon footprint (average is 2.1 tonnes carbon dioxide equivalents per capita per annum) in the reviewed cities, whereas it was generally the largest driver of urban ecological footprints (average is 1.2 global hectares per capita per annum), with large deviations based on wealth, culture, and urban form. Meat and dairy are the primary drivers of both global warming and ecological footprint impacts, with little relationship between their consumption and city wealth. The foodprint is primarily linear in form, producing significant organic exhaust from the urban system that has a strong, positive correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, cities can still implement design and policy interventions, such as improved nutrient recycling and food waste avoidance, to redress the foodprint.
ER - 

Journal Article

2016

Author(s)

  • Benjamin Paul Goldstein
  • John E. Fernández
  • Michael Hauschild
  • Morten Birkved

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

Surveying the Environmental Footprint of Urban Food Consumption

Journal of Industrial Ecology

Journal of Industrial Ecology

Assessments of urban metabolism (UM) are well situated to identify the scale, components, and direction of urban and energy flows in cities and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure, such as transport, space conditioning, and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with 'biomass') and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting of the environmental footprint from urban food demand ('foodprint') is necessary. This article reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint, and ecological footprint and situates it relative to other significant environmental drivers (transport, energy, and so on) The foodprint was typically the third largest source of mass flows (average is 0.8 tonnes per capita per annum) and carbon footprint (average is 2.1 tonnes carbon dioxide equivalents per capita per annum) in the reviewed cities, whereas it was generally the largest driver of urban ecological footprints (average is 1.2 global hectares per capita per annum), with large deviations based on wealth, culture, and urban form. Meat and dairy are the primary drivers of both global warming and ecological footprint impacts, with little relationship between their consumption and city wealth. The foodprint is primarily linear in form, producing significant organic exhaust from the urban system that has a strong, positive correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, cities can still implement design and policy interventions, such as improved nutrient recycling and food waste avoidance, to redress the foodprint.

Tags

  • Carbon Footprint (CF)
  • Case Study
  • Ecological Footprint (EF)
  • Food
  • Material Flow Analysis (MFA)
  • Single point in time
  • Urban

More information

10.1111/jiec.12384

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Reflections on the first Actionable Science for Urban Sustainability (un)conference (AScUS) 2020
June 23, 2020

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands