Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #1113

Bibtex

@article{reference_tag,
  author = "Boyer, D.; Sarkar, J.; Ramaswami, A.",
  title = "Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities",
  journal = "Earth’s Future",
  year = 2019,url = "https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018EF001048",
  abstract = "With ever-growing populations, cities are increasingly interested in ensuring a well-functioning food system. However, knowledge of variation between individual city food systems is limited. This is particularly true in countries such as India, experiencing significant issues related to food security and sustainability. This paper advances the understanding of urban food systems, by analyzing the unique food systems of nine cities within India, through the integration of multiple city-specific data sources including demand of residents, visitors and industries, and commodity-specific supply chains to assess nutrition, environmental impact, and supply risk. This work finds a large degree of intercity food system variability across multiple food system characteristics. Specifically, levels of undernutrition vary, with the percentage of city populations who are underconsuming protein ranging from 0% to 70%, and for calories 0% to 90%. Environmental impacts (consumptive water loss, land use, and greenhouse gas emissions) of urban food demand also show variation, largely influenced by differing composition of residential diet. Greenhouse gas emissions are also largely influenced by location of production and spatially informed energy intensity of irrigation. Supply chain distance (“food-miles”) also vary by city, with the range of 196 (Pondicherry) to 1,137 (Chennai) km/Mg—shorter than more industrialized nations such as the United States. Evaluating supply chain risk in terms of water scarcity in food-producing regions that serve city demand finds production locations, on average, to be less water-scarce than the watersheds local to the urban environments. This suggests water-intensive agriculture may at times be best located at a distance from urban centers and competing demands.",
  doi = "10.1029/2018EF001048",
}

RIS

TY  - JOUR
T1 - Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities
AU - Boyer, D.; Sarkar, J.; Ramaswami, A.
Y1 - 2019
UR - https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018EF001048
DO - 10.1029/2018EF001048
N2 - With ever-growing populations, cities are increasingly interested in ensuring a well-functioning food system. However, knowledge of variation between individual city food systems is limited. This is particularly true in countries such as India, experiencing significant issues related to food security and sustainability. This paper advances the understanding of urban food systems, by analyzing the unique food systems of nine cities within India, through the integration of multiple city-specific data sources including demand of residents, visitors and industries, and commodity-specific supply chains to assess nutrition, environmental impact, and supply risk. This work finds a large degree of intercity food system variability across multiple food system characteristics. Specifically, levels of undernutrition vary, with the percentage of city populations who are underconsuming protein ranging from 0% to 70%, and for calories 0% to 90%. Environmental impacts (consumptive water loss, land use, and greenhouse gas emissions) of urban food demand also show variation, largely influenced by differing composition of residential diet. Greenhouse gas emissions are also largely influenced by location of production and spatially informed energy intensity of irrigation. Supply chain distance (“food-miles”) also vary by city, with the range of 196 (Pondicherry) to 1,137 (Chennai) km/Mg—shorter than more industrialized nations such as the United States. Evaluating supply chain risk in terms of water scarcity in food-producing regions that serve city demand finds production locations, on average, to be less water-scarce than the watersheds local to the urban environments. This suggests water-intensive agriculture may at times be best located at a distance from urban centers and competing demands.
ER - 

Journal Article

2019

Author(s)

Boyer, D.; Sarkar, J.; Ramaswami, A.

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities

Earth’s Future

Earth’s Future

With ever-growing populations, cities are increasingly interested in ensuring a well-functioning food system. However, knowledge of variation between individual city food systems is limited. This is particularly true in countries such as India, experiencing significant issues related to food security and sustainability. This paper advances the understanding of urban food systems, by analyzing the unique food systems of nine cities within India, through the integration of multiple city-specific data sources including demand of residents, visitors and industries, and commodity-specific supply chains to assess nutrition, environmental impact, and supply risk. This work finds a large degree of intercity food system variability across multiple food system characteristics. Specifically, levels of undernutrition vary, with the percentage of city populations who are underconsuming protein ranging from 0% to 70%, and for calories 0% to 90%. Environmental impacts (consumptive water loss, land use, and greenhouse gas emissions) of urban food demand also show variation, largely influenced by differing composition of residential diet. Greenhouse gas emissions are also largely influenced by location of production and spatially informed energy intensity of irrigation. Supply chain distance (“food-miles”) also vary by city, with the range of 196 (Pondicherry) to 1,137 (Chennai) km/Mg—shorter than more industrialized nations such as the United States. Evaluating supply chain risk in terms of water scarcity in food-producing regions that serve city demand finds production locations, on average, to be less water-scarce than the watersheds local to the urban environments. This suggests water-intensive agriculture may at times be best located at a distance from urban centers and competing demands.

Tags

  • Case Study
  • Food
  • Greenhouse Gases (GHGs)
  • Urban

More information

10.1029/2018EF001048

Website

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Reflections on the first Actionable Science for Urban Sustainability (un)conference (AScUS) 2020
June 23, 2020

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands