Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #1081

Bibtex

@article{reference_tag,
  author = "Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus",
  title = "Carbon footprints of cities and other human settlements in the UK",
  journal = "Environmental Research Letters",
  year = 2013,url = "https://doi.org/10.1088%2F1748-9326%2F8%2F3%2F035039",
  abstract = "A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.",
  doi = "10.1088/1748-9326/8/3/035039",
}

RIS

TY  - JOUR
T1 - Carbon footprints of cities and other human settlements in the UK
AU - Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus
Y1 - 2013
UR - https://doi.org/10.1088%2F1748-9326%2F8%2F3%2F035039
DO - 10.1088/1748-9326/8/3/035039
N2 - A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.
ER - 

Journal Article

2013

Author(s)

Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

Carbon footprints of cities and other human settlements in the UK

Environmental Research Letters

Environmental Research Letters

A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.

Tags

  • Carbon Footprint (CF)
  • Case Study
  • Greenhouse Gases (GHGs)
  • Multi-Region Input-Output (MRIO) Analysis
  • Rural
  • Urban

More information

10.1088/1748-9326/8/3/035039

Website

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Reflections on the first Actionable Science for Urban Sustainability (un)conference (AScUS) 2020
June 23, 2020

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands